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Abstract
We examine the entanglement dynamics of two initially entangled qubits
coupled to independent photon reservoirs and undergoing continuous matter-
state–photon population transitions. We represent the decay and replenishment
of matter-based bit states via photons by time-dependent generalized conversion
functions. For the specific case of a sinusoidal function, we show that sudden
death events in qubit–qubit entanglement anti-correlate (correlate) exactly
with sudden birth events in photon–photon entanglement for the symmetric
(anti-symmetric) mode of quantum conversions. We show the invariance in
dynamics of all possible bipartite concurrences for various configurations of
qubit–reservoir systems and highlight its crucial role in identifying a global
concurrence of the multipartite system. We study the coherently driven
quantum dot-cavity system as a specific application of our approach, including
an analysis of evolution of its Meyer–Wallach measure with time.

PACS numbers: 03.65.Yz, 03.65.Ud, 03.67.Mn

1. Introduction

The efficient conversion between photons and well-known two-level matter states such as
trapped atoms [1] and excitations in nanostructures [2, 3] provides an interesting perspective
to the study of entanglement dynamics in quantum information systems. In recent years,
many works [4–15] have focused on the theme that a system of two initial entangled qubit
states evolving under the action of the environmental variables of reservoir states experiences
disentanglement in finite time or undergoes entanglement sudden death (ESD) [8–10]. These
works adopt the conventional model in which there is gradual and irreversible dissipation
of qubit–qubit entanglement into reservoir states. In this work, we employ a framework
in which quantum information is transferred from qubit states to reservoir states and vice
versa at appropriate times as is the case when photons and matter states convert from one
form to another. Such a model provides a convenient approach to investigating whether net
entanglement amongst various bipartite systems remains a constant of time.
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The entanglement between two initial entangled qubit states is irreversibly lost with
onset of the first ESD to the continuum reservoir states for qubit states undergoing purely
exponential decay. There are exceptions to this rule as for instance in initially unentangled
qubit systems, spontaneous emission leads to entanglement under special situations [16]. In
this work, we consider a generalized qubit–reservoir interaction in which bit states can be
replenished periodically at the expense of reservoir states as in the case of controlled quantum
state conversions. The choice of a generalized qubit–reservoir interaction is appropriate
and timely in view of significant advances in experimental techniques where spontaneous
emission lifetimes in quantum dot-microcavity systems can be easily manipulated using system
parameters [17]. The well-controlled emission of photons in cavity quantum electrodynamics
(QED) can also be reversed in high finesse systems so that the emission process becomes
almost deterministic under suitable conditions [18]. Recent experimental realization of
efficient exciton–plasmon–photon conversions [2] as well as storage capabilities of photons
into alternative forms of matter [3] also show potential applications of generalizing qubit–
reservoir interactions in quantum systems.

In this work, we examine the entanglement dynamics of entangled qubits for some explicit
choices of matter-state–photon conversion functions and for various configurations of qubit–
reservoir systems. For instance, other than considering a pair of qubits which are matched
with their reservoir counterparts, we also include systems in which either one reservoir or
qubit is absent. The choice of a simple form (pure sinusoidal with zero decoherence) in the
first instance is used to highlight important features associated with reversible conversions
between photon and matter states. We also consider in detail the coherently driven quantum
dot-cavity system including analysis of its Meyer–Wallach measure. The explicit relations
between sums of bipartite concurrences for various configurations of quantum conversions in
the multipartite qubit system as well as the influence of symmetric and antisymmetric modes
of conversions on entanglement exchanges are also investigated. Lastly, we examine how the
three-tangle (τ3), which is a generalization of concurrence to three subsystems, responds to
matter-state–photon conversions.

2. Entanglement in multipartite systems

To illustrate the above problem, we consider a pair of two-level qubit system with the ground
(excited) state |0〉ex (|1〉ex) corresponding to the absence (presence) of an excited state with
equal creation energy at adjacent quantum dots. The quantum dots are assumed to be located
far apart so that interactions between the excited states leading to the formation of multiply
charged states such as charged excitons [19] are excluded and the possibility of formation of
qutrit states neglected. Each qubit is coupled to its own reservoir of photons so that at t = 0,
the reservoirs associated with different quantum dots are uncorrelated. The qubit in its higher
excited state is considered to undergo quantum state conversion to photon states during which
it makes a transition from |1〉ex to |0〉ex. For simplicity, we consider that only a single photon
at any allowed mode is emitted to form part of the reservoir states.

We associate the presence (absence) of matter states or photons with the existence of a
two-level qubit system in the ground (excited) state so that matter states can be considered
to store information. Exchange of information occurs when matter states undergo population
transition to photon states and vice versa and thus information flows whenever conversions
occur between matter and photon states. Hence, we use the terms ‘state transfer’ and
‘conversion’ interchangeably to describe information flow that occurs when matter states
convert to photons and vice versa. We regard the processes of population transfer, information
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flow, quantum state transfer and conversion as unified by both local and non-local exchanges,
in the spirit of an important work by Cirac et al [20].

We consider that the conversion process proceeds initially from a composite state of a
single excited state in a quantum dot with its corresponding reservoir in the vacuum state via
the simple route

|1〉ex |0〉p −→ u(t) |1〉ex |0〉p + v(t) |0〉ex |1〉p, (1)

where |0〉p denotes the reservoir state with zero photon occupation at allowed modes and
|1〉p denotes the presence of a single photon at any allowed mode. In this work, we reserve
the term qubit only for the excited state in a quantum dot and refer to photons (denoted
by index p) as reservoir states for notational convenience, bearing in mind that photons are
well known [1] as ‘flying qubits’. The functions u(t) and v(t) are considered to satisfy the
relation u(t)2 + v(t)2 = 1. The characteristics of conversion between the excited state and
photon states is contained in the generalized function u(t) which is generally dependent on
external control parameters as can be interpreted from recent investigations of quantum state
conversion processes [2, 3, 17, 21]. However, the determination of the exact form for u(t) is
based on several parameters associated with the experimental set-up and is beyond the scope
of this work. Hence, we focus on the entanglement flow associated with just simple forms
for u(t) and v(t), assuming a global quantum system consisting of only the qubit and photon
subsystem.

The reversible conversion process |1〉ex |0〉p ⇐⇒ |0〉ex |1〉p leads to entanglement between
the excited state and photon states and may last for an infinite time period for u(t) that is
immune to spontaneous emission processes. The excited state converts to photon states with a
monotonic decrease of u(t) with time while there is transfer from photon to matter states when
u(t) increases with time. It is common to use u(t) ∼ exp(−t/2) in the presence of a large
reservoir of photon states [7–9]. We now consider the joint evolution of a pair of two-level
qubits undergoing conversions to photon states in uncorrelated reservoirs using a generalized
initial state

|�〉0 = [a |0〉ex1 |0〉ex2 + b |1〉ex1 |1〉ex2 + c |0〉ex1 |1〉ex2

+ d |1〉ex1 |0〉ex2] |0〉p1 |0〉p2, (2)

where i = 1, 2 denote the two qubit–reservoir systems with associated functions ui(t). The
state |�〉0 evolves as a four-qubit multipartite state influenced by the real coefficients a, b, c, d.
As the conversion process is initiated only by the formation of photons from the excited state,
components of |�〉0 associated with |0〉ex at t = 0 do not evolve with time. Thus for instance,
terms associated with coefficients d evolve as

d |1〉ex1 |0〉ex2 |0〉p1 |0〉p2 −→ d[u1(t) |1〉ex1 |0〉p1 + v1(t) |0〉ex1 |1〉p1] |0〉ex2 |0〉p2. (3)

Using equations (1) and (2) and tracing out the reservoir states, we obtain a time-dependent
qubit–qubit reduced density matrix in the basis (|0 0〉, |0 1〉|1 0〉|1 1〉)

ρex1,ex2(t) =

⎛⎜⎜⎝
f1(t) f5(t) f6(t) f7(t)

f5(t) f2(t) f8(t) f9(t)

f6(t) f8(t) f3(t) f10(t)

f7(t) f9(t) f10(t) f4(t)

⎞⎟⎟⎠ , (4)

where for t � 0, the matrix elements evolve as

f1(t) = a2 + b2v1(t)
2v2(t)

2 + c2v2(t)
2 + d2v1(t)

2,

f2(t) = b2v1(t)
2u2(t)

2 + c2u2(t)
2,

f3(t) = b2u1(t)
2v2(t)

2 + d2u1(t)
2,
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f4(t) = b2u1(t)
2u2(t)

2, f5(t) = acu2(t),

f6(t) = adu1(t) + bcu1(t)v2(t)
2,

f7(t) = abu1(t)u2(t), f8(t) = cdu1(t)u2(t),

f9(t) = bcu1(t)u2(t)
2, f10(t) = bdu1(t)

2u2(t).

The photon–photon reduced density matrix ρp1,p2 can similarly be obtained by tracing out
the excited states and possesses a form complementary to equation (4) with ui ↔ vi . For
c = d = 0, reduced bipartite density matrices ρex1,ex2, ρp1,p2, ρex1,p1 and ρex1,p2 assume simple
forms with the well-known X-state structure which preserve their X-form during evolution.
The density matrix of an X-state has the following X-form:

ρX,Y (t) =

⎛⎜⎜⎝
p 0 0 x

0 q y 0
0 y� r 0
x� 0 0 s

⎞⎟⎟⎠ , (5)

where normalization and positivity conditions, TrρX,Y (t) = 1 and ρX,Y (t) > 0, require that
p, q, r, s are non-negative, p + q + r + s = 1 and off-diagonal terms x and y satisfy |x| � √

ps

and |y| � √
qr

In order to study the conditions under which ESD and entanglement sudden birth
(ESB) occur, we evaluate the concurrence [23] for the appropriate density matrix using
C(t) = max{0,

√
λ1 − √

λ2 − √
λ3 − √

λ4} where λi are eigenvalues in decreasing order of
the Hermitian matrix ρ̃ = ρ

(
σ 1

y ⊗ σ 2
y

)
ρ∗ (

σ 1
y ⊗ σ 2

y

)
where σy belongs to the set of Pauli

matrices. ρ∗ denotes the complex conjugation of ρ in the standard basis (4). For density
matrices associated with all possible bipartite partitions of two qubits, we obtain for c = d = 0

Cex1,ex2(t) = max{0, 2u1u2(|ab| − b2v1v2)}, (6)

Cp1,p2(t) = max{0, 2v1v2(|ab| − b2u1u2)},
Cex1,p1(t) = max{0, 2b2u1v1},
Cex1,p2(t) = max{0, 2abu1v2 − 2b2u1u2v1v2},

where the forms for Cex2,p2(t) and Cex2,p1(t) can be obtained by interchanging u1 ↔ u2 and
v1 ↔ v2. From equation (2), we note that c = d = 0 corresponds to the physical situation
where the pair of quantum dot system exists simultaneously in excited or ground states. Thus,
we exclude the case where the quantum dots exist in different qubit states at t = 0. It is
important to note that due to normalization and positivity conditions, partitions c = d = 0 and
a = b = 0 cannot be satisfied simultaneously if the X-form in equation (4) is to be maintained.

2.1. Symmetric mode of quantum state conversion

To simplify analysis of the entanglement dynamics of the reduced density matrix in equation (4)
and associated pairwise interactions, we consider the symmetric mode of conversion where
the information flow from both qubits to their reservoir counterparts occurs in phase. We
consider the simple case where u1 = u2 = 1√

2

√
1 + p and v1 = v2 = 1√

2

√
1 − p. Using

equation (6), we obtain an explicit relation involving all possible bipartite concurrences in the
region max

( − 1, 1 − 2
∣∣ a
b

∣∣) < p < min
(
1, 2

∣∣ a
b

∣∣ − 1
)

and a
b

> 1
2 :

Cg(t) = Cex1,ex2(t) + Cp1,p2(t) +
∣∣∣a
b

∣∣∣ [Cex1,p1(t) + Cex2,p2(t)] − Cex1,p2(t) − Cex2,p1(t)

= 2|ab|. (7)

We define Cg(t) as the global concurrence composed of all possible bipartite concurrences
with appropriate weighting parameters and dependent only on the initial configuration of
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the multipartite system. Cg(t) remains unchanged with time and the overall distribution of
entanglement among various subsystems involved in pairwise interactions is conserved in the
absence of decoherence or dissipative mechanisms [24, 25]. The global concurrence Cg(t)

therefore possesses the important property of invariance in dynamics of all possible bipartite
concurrences. An increase in entanglement between any two parties would be at the expense of
information that is shared between other parties and is dependent on the initial entangled state
amplitude parameters a and b. In figure 1, we show the regions of invariance of dynamics of a
multipartite system (shaded) undergoing the symmetric mode of quantum state conversion as
considered in equation (7). The invariance in dynamics for the specific configuration involving
matched pairs of the qubit–reservoir system and employing the Jaynes–Cummings model
operating in the symmetric mode has also been shown in an earlier work by Yönaç et al [10].
However, the crucial role played by the property of invariance in defining the global invariance
was unexplored in Yönaç’s work. It is important to note that in the definition for Cg(t), the
inter qubit–photon partitions (ex1, p2) and (ex2, p1) are subtracted from the superpositions
of the other bipartite partitions. The possibility of determining a global concurrence that is an
invariant of dynamics of all possible bipartite concurrences for the more general N pair of the
qubit–reservoir system will be pursued in a future work.

Substituting p = cos(ωt), we can verify that multiple ESD and ESB events occur at
periodic intervals:

tex1,ex2 = 1

ω

[
cos−1

(
1 − 2

∣∣∣a
b

∣∣∣) + 2nπ
]
,

tp1,p2 = 1

ω

[
cos−1

(
2
∣∣∣a
b

∣∣∣ − 1
)

+ 2nπ
]
, (8)

where increasing values of integer n signify successive ESB and ESD events in qubit–qubit
and photon–photon entanglement. At b = 2a, tex1,ex2 = tp1,p2 so that times of death
events associated with the bipartite partition matrix ρex1,ex2 coincide with birth events for
its counterpart partition matrix ρp1,p2. The maximum concurrence of C = 2|ab| oscillates
between these two partitions at periodic intervals of 2π/ω. Such a pattern of information
transfer is intuitively expected as the information flows from both qubit system to their reservoir
counterpart occur in tandem. The situation is reversed in the case of the antisymmetric mode of
quantum state conversion as will be shown in the following section. While the explicit choice
of a sinusoidal function for p = cos(ωt) has not been derived from an appropriate model
Hamiltonian, equation (8) captures some salient features associated with reversible mapping
of a photon state to and from the ground state of quantum dot systems. It is to be noted that
similar trends in birth and death events have been obtained for u(t) ∼ exp(−t/2) in an earlier
work by López and coworkers [7].

It is to be noted that for a = b = 0, reduced bipartite density matrices ρex1,ex2 and ρp1,p2

also assume simple forms with the well-known X-state structure, the only difference from the
c = d = 0 case being that the terms f4(t) = 0 and f7(t) = 0. We also note similarities
in the role played by functions f7(t) = 0 and f8(t) = 0. Accordingly, the various bipartite
concurrences can be easily calculated and analysis as in equation (6) can be made. Results
similar to the c = d = 0 case are expected to be obtained and we will therefore not pursue
investigation of the a = b = 0 situation any further.

To illustrate a symmetric mode of quantum state conversion with non-zero values for
c, we have shown in figure 2(a) numerical results of the evolution of concurrence between
the two qubits Cex1,ex2(t) (solid line) and two photons Cp1,p2(t) (short dashed line) for the
initial state of equation (2). We have used a = √

1/3, b = √
1.9/3 and c = √

0.1/3 with
u1 = v2 = √

1/2(1 + cos(5λt) exp(−0.25λt). The form of u(t) (long dashed lines in
figure 2(b)) describes approximately the beating phenomena with weak damping that occurs
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Figure 1. (i)–(iv) Shaded regions represent entanglement dynamics of the multipartite system in
which Cg(t) in equation (7) remains invariant. Panels (i) and (ii) correspond to u(t) or v(t) as
y-axis variables while (iii) and (iv) correspond to p(t) as the y-axis variable. In (i) and (ii), both
u(t) and v(t) as y-axis variables yield the same invariance regions due to inherent symmetry in
equation (6). a and b denote the initial entangled state amplitude parameters.

between the isolated molecule-nanoparticle system undergoing conversions via coherent
energy transfer [22]. We have assumed that photons take on an ancillary role during the
energy transfer. The concurrence in the qubit–qubit subsystem is transferred to the bipartite
photon system depending on the characteristics of quantum state exchanges determined by u(t).
Figure 2(b) shows that at λt � 2.3, evolution of Cex1,p1(t) (solid line) matches that of u(t).
The fine interplay in entanglement exchanges between the intra qubit–photon concurrence
Cex1,p1(t) and inter qubit–photon concurrence Cex1,p2(t) is dependent on the initial state
parameters, a, b, c.

2.2. Antisymmetric mode of quantum state conversion

In the case of the antisymmetric mode of quantum state conversion, the information flow from
qubit to reservoir in one system is compensated by information flow from reservoir to qubit
in the adjacent subsystem for which we express u1 = v2 = u, v1 = u2 = v. This means
that the system of two qubit–reservoir states undergoes matter-state–photon conversions such
that formation of photons in one qubit–reservoir is correlated with the formation of excited
states in the adjacent qubit–reservoir system. We can expect exact matching in qubit–qubit

6



J. Phys. A: Math. Theor. 42 (2009) 335301 A Thilagam

1 2 3 4 5 6 7
Λt

0.2

0.4

0.6

0.8

1

C

1 2 3 4 5 6 7
Λt

0.2

0.4

0.6

0.8

1

C

(a) (b)

Figure 2. (a) Evolution of two-qubit concurrence Cex1,ex2(t) (solid line) and Cp1,p2(t) (short
dashed), for the initial state of equation (2) with a = √

1/3, b = √
1.9/3 and c = √

0.1/3. (b)
Evolution of Cex1,p1(t) (solid line) and Cex1,p2(t) (short dashed), for the same initial state as in
figure 4(a). u1 = u2 = √

1/2(1 + cos(5λt) exp(−0.25λt) is shown in long dashed lines.

and reservoir–reservoir concurrences under these conditions. Using u1 = 1√
2

√
1 + p and

u2 = 1√
2

√
1 − p and equation (6), we obtain an explicit expression for the global concurrence

Cg(t) = Cex1,p2(t) + Cex2,p1(t) +
∣∣∣a
b

∣∣∣ [Cex1,p1(t) + Cex2,p2(t)] − Cex1,ex2(t) − Cp1,p2(t)

= 2|ab|. (9)

Equation (9) becomes identical to equation (7) when the notational change ex2 ↔ p2 is made
as is the case when association of the excitation state |1〉ex with the generalized function
ui is made. As mentioned earlier, the evolution of qubit–qubit entanglement matches that of
reservoir–reservoir entanglement and the two bipartite subsystems (ρex1,ex2 and ρp1,p2) undergo
birth and death events concurrently. For p = cos(ωt), we obtain

tex1,ex2 = tp1,p2 = 1

ω

[
sin−1

(
2
∣∣∣a
b

∣∣∣) + 2nπ
]
. (10)

At t = 0, u1(0) = 1, u2(0) = 0 and we obtain Cex1,ex2 = Cp1,p2 = Cex1,p1 = Cex2,p2 =
Cex2,p1 = 0. At t = 0, all quantum information is carried by the inter qubit–reservoir
bipartite partition, Cex1,p2(0) = 2|ab|. Figure 3 shows numerical results of the evolution of
concurrence between the two qubits (solid line) and two photons (dotted line) for the initial
state of equation (2) with a = √

0.9/3, b = √
1.5/3, c = √

0.2/3 and d = √
0.4/3 for

u1 = v2 = √
1/2(1 + cos(2λt) exp(−0.1λt). The higher entanglement contained initially in

the photon–photon subsystem is partially transferred to the bipartite qubit system based on
the quantum state exchanges determined by u(t). The slight discrepancy in the concurrence
of the bipartite partition (ex1, ex2) and (p1, p2) can be attributed to non-zero values for the
initial state amplitudes c and d in equation (2).

2.3. Absent qubit or reservoir

Here we briefly analyze entanglement flow characteristics in multipartite system configurations
in which either a qubit or a reservoir is absent. We aim to examine the effect of changes in the
configurations of qubit–reservoir systems on the invariance of non-zero pairwise concurrences.
When u1 = u, u2 = 1, v1 = v and v2 = 0, the second reservoir can be considered absent.
Accordingly, all pairwise concurrences involving a non-existent second reservoir are zero,
Cp1,p2(t) = Cex1,p2(t) = Cex2,p2(t) = 0. The second qubit is not coupled to any reservoir states
at t = 0; however, this changes with time asCex2,p1(t) = 2|ab|v implying that at t > 0, the qubit

7
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Figure 3. Evolution of two-qubit concurrence Cex1,ex2(t) (solid line) and qubit–photon concurrence
Cp1,p2(t) (short dashed) for the initial state of equation (2) with a = √

0.9/3, b = √
1.5/3,

c = √
0.2/3 and d = √

0.4/3 and u1 = v2 = √
1/2(1 + cos(2λt) exp(−0.1λt)

adopts the reservoir states belonging to the first qubit. We can easily show using equation (6)
that C2

ex2,p1 + C2
ex1,ex2 = 4a2b2 which implies conservation of concurrence associated with

the second qubit, a scenario which one can expect intuitively. We also obtain an explicit
expression for the global concurrence based on the invariance of the remaining non-zero
pairwise concurrences:

Cg(t) = Cex1,ex2 × Cex2,p1

Cex1,p1
= 2a2. (11)

The entanglement between the two qubit states is compromised by the strengthening of inter
qubit–photon concurrence, Cex2,p1(t). Thus, a system of two qubits where only one reservoir is
present evolves such that the sole reservoir becomes the source of conversion or decoherence
over time. In the related case where the second qubit is absent, we set u1 = u, u2 = 0, v1 = v

and v2 = 1; the system is composed of one qubit and two reservoirs. It can be easily shown
that the sole qubit adopts the unattached reservoir as a source of quantum state conversion
or decoherence over time. By making the association, ex2 ↔ p2, we obtain the following
invariance relations from equation (11):

C2
p2,p1 + C2

ex1,p2 = 4a2b2

Cg(t) = Cex1,p2 × Cp2,p1

Cex1,p1
= 2a2. (12)

It is important to note that results obtained so far are generic to any two-level qubit system
undergoing quantum state conversion and therefore not specific to excitations in the quantum
dot system considered here.

3. The Meyer–Wallach measure

Here we analyze the change in the Meyer–Wallach measure (MW) with generalized function
ui for the pair of qubit–reservoir system in equation (2). We examine how a different measure
of entanglement influences information flow when matter states convert to photons and vice
versa. The MW measure is a monotone measure defined [26] as a single scalar measure of
pure state entanglement for the three- and four-qubit cases:

Q = 1

n

n∑
k=1

2
(
1 − Tr

[
ρ2

k

])
, (13)

where ρk is the reduced density matrix of the kth qubit which is obtained after tracing out
all the remaining qubits. The MW measure has drawbacks in that it is unable to distinguish

8



J. Phys. A: Math. Theor. 42 (2009) 335301 A Thilagam

states which are fully inseparable from states which are separable into states of some set of
subsystems. Nevertheless we will, for simplicity reasons, use it in our work as a crude quantity
to analyze results obtained using concurrence, a purely bipartite measure.

For c = d = 0, the simple forms for the one-qubit reduced density matrices allow us to
obtain an explicit expression for the MW measure:

Q = 1

2

[
2∑

i=1

(
1 − (

a2 + b2u2
i

)2 − b4v2
i

)
+

(
1 − (

a2 + b2v2
i

)2 − b4u2
i

)]
. (14)

Maximum Q = 1 is obtained for a = 0, b = 1 with u1 = u2 = 1√
2

for the following state:

|�〉m = 1

2
[|11〉ex |00〉p + |00〉ex |11〉p + |01〉ex |10〉p + |10〉ex |01〉p],

which involves all possible combinations of the quantum state where either the qubit or its
corresponding reservoir is occupied but not both at the same time. For a = b = 1√

2
, we obtain

Q = 1
2

(
1+u2

1−u4
1 +u2

2−u4
2

)
, and a constant value of Q = 0.5 is obtained for (u1 = 1, u2 = 0),

(u1 = 0, u2 = 1), (u1 = 1, u2 = 1) or (u1 = 0, u2 = 0) partitions. In the following section,
we include an analysis of the evolution of the MW measure in the coherently driven quantum
dot-cavity system.

4. Entanglement of the coherently driven quantum dot-cavity system

In this section, we consider two noninteracting quantum dot excitonic qubits which are placed
inside high-Q single mode cavities and which interact individually with a single mode of the
radiation field. We also consider each excitonic system to be coherently driven by an external
quantized field of a different mode. This problem is analogous to Wilken and Meystre’s
modified Jaynes–Cummings model [27] in which two different modes are supported by a
resident atom in a cavity. The exciton–field interaction is thus given by the Hamiltonian [27]
(h̄ = 1)

H = g[σ+(a + b) + σ−(a† + b†)], (15)

where g is the exciton-cavity photon coupling constant which is assumed to be the same as
the exciton-external field coupling constant and a and b are annihilation operators for the two
modes interacting with the excitonic system. σ+ and σ− are the respective Pauli’s raising
and lowering matrix operators. We assume for simplicity that phonon interactions are absent
bearing in mind that inclusion of lattice vibrations will not affect the final outcome of our
result. We define normal-mode operators

A = 1√
2
(a + b), B = 1√

2
(a − b),

which obey the Bose commutation relations, [A,A†] = [B,B†] = 1. These commutation
relations simplify equation (15) to the following form [27]:

H =
√

2g[σ+A + A†σ−], (16)

which is noticeably independent of the antisymmetric combination operator B. Following [28],
we represent photons in the external field as well as cavity field in the form of coherent states:

|α〉a |β〉b =
∣∣∣∣ 1√

2
(α + β)

〉
A

∣∣∣∣ 1√
2
(α − β)

〉
B

.

9
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Finally, we substitute Wilken and Meystre’s simple expression for the probability of finding the
atom in the excited state [27] for u(t)2 (see equation (1)) which yields the survival probability
of the exciton in a quantum dot at t > 0:

u2(t, α, β, g) =
∣∣∣∣ cos(

√
2gt

√
K†K)

∣∣∣∣ 1√
2
(α + β)

〉
A

∣∣∣∣2

= 1

2
+

1

2
e− |α+β|2

2

∞∑
n=0

( |α + β|2
2

)n
1

n!
cos(2

√
2gt

√
n + 1), (17)

where K = A†A is the number operator for the symmetric normal mode. Accordingly, we
identify v(t)2 with the survival probability of the coherent state of photons in the symmetric
mode,

∣∣ 1√
2
(α + β)

〉
A

. We thus arrive at two entities which exchange quantum information,
the exciton and the coherent state of photons in the symmetric combination mode. A similar
expression as in equation (17) has been obtained for the coherently driven quantum dot-cavity
system with phonon interactions in [29]. Klimov and Chumakov [30] and Azuma [31] have
simplified evaluation of the infinite series in equation (17) by converting the series into a sum
of two integrals. It was shown [30, 31] that the first integral describes the initial collapse of the
excited system in the semi-classical limit while the second integral incorporating quasi-chaotic
dynamics occurs due to quantum correction.

We now consider the joint evolution of a pair of noninteracting coherently driven quantum
dot-cavity system interacting with coherent photon states in the symmetric mode. To illustrate
the effect of the parameters α, β and the exciton-cavity photon coupling constant g on the
entanglement dynamics, we show in figure 4(a) numerical results of concurrence describing
the entanglement of the pair of quantum dot excitons, Cex1,ex2(t) in the initial state of
equation (2) with a = √

1/2, b = √
1/2, c = d = 0. The solid line corresponds to

u1 = u2 = u(t, α = 3.8, β = 2, g = 1.45) substituted in u(t)2 (see equation (17)).
The dashed line applies to Cex1,ex2(t) evaluated using u1 = u(t, 3.8, 2, 1.45) and u2 =
u(t, 3.8, 2, 0.35). The figure shows the typical collapses and revivals [27] present in the
concurrence, Cex1,ex2(t). The frequency of these collapses and revivals increases with the
coupling constant g. One can detect a region of small amplitude of oscillations for large g

(solid line) which is disrupted by sizable amplitudes when two quantum dot-cavity systems with
one having a smaller value of g are considered (dotted line in figure 4(a)). The entanglement
of two unequal subsystems, one of larger g and another of smaller g, leads to a decrease in
frequency of revivals as well as reduction in amplitude of revivals at 10 � t � 14. We note
similar trends in figures 4(b) and 4(c) where we evaluate the Meyer–Wallach measure Q for
0 � t � 10 and 10 � t � 15 respectively. The dashed line corresponds to Q evaluated using
u1 = u2 = u(t, α = 3.8, β = 2, g = 1.45) while the solid line corresponds to Q evaluated
using u1 = u(t, 3.8, 2, 1.45) and u2 = u(t, 3.8, 2, 0.35). We note that Q is bounded by the
upper limit of Q = 3/4 which is obtained when u1 = u2 = a = b = √

1/2.
In figure 4(d), we highlight the anti-correlation between qubit–qubit and photon–photon

(Cp1,p2(t)) entanglements in the symmetric mode where u1 = u2 = u(t, 2, 2, 1). We note
that increasing the value of g with respect to α and β yields a region (2.5 � t � 7) where
the oscillations reach almost zero amplitude after the initial collapse of the exciton. A quasi-
chaotic region (10 � t � 25) in which frequent exchanges between the exciton–exciton
subsystem and the bipartite photon system is obtained where the frequency of exchanges is
influenced by the initial state parameters, a and b.

10
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Figure 4. (a) Concurrence Cex1,ex2(t) of a pair of coherently driven quantum dot-cavity
systems with the initial state in equation (2) with a = √

1/2, b = √
1/2, c = d = 0 and

u1 = u2 with α = 3.8, β = 2, g = 1.45 (see equation (17)) (solid line). The dashed
line applies to Cex1,ex2(t) evaluated using u1 = u(t, 3.8, 2, 1.45) and u2 = u(t, 3.8, 2, 0.35).
Time t is taken to be a dimensionless quantity. (b) and (c) Evolution of the Meyer–
Wallach measure Q at 0 � t � 10 and 10 � t � 15 in which the dashed line
corresponds to Q evaluated using u1 = u2 = u(t, 3.8, 2, g = 1.45) while the solid line
corresponds to Q evaluated using u1 = u(t, 3.8, 2, 1.45) and u2 = u(t, 3.8, 2, 0.35). (d)
Evolution of Cex1,ex1(t) (solid line) and Cp1,p2(t) (dashed line), with the initial state in
equation (2) with a = √

1.5/3, b = √
1.2/3, c = √

0.2/3 and d = √
0.1/3, u1 = u2 =

u(t, 2, 2, 1).

5. Three-tangle dynamics

In this section, we briefly examine how the purely tripartite entanglement or three-tangle
(τ3), an important measure of entanglement in three-qubit states [32], responds to matter-
state–photon conversions. We consider a simple system of two qubits interacting with a sole
reservoir with the initial state

|�〉0 = a |0〉ex1 |0〉ex2 |0〉p + b |1〉ex1 |1〉ex2 |0〉p , (18)

which we rewrite as a state in a three-qubit Hilbert space, |�〉0 = a |000〉 + b |110〉. We
simplify the analysis by considering that photons formed in the reservoir states are due to
a single qubit and no allowed reservoir mode can be occupied by photons from both qubit
sources at the same time. This requirement ensures a tractable conversion rule

|110〉 −→ u |110〉 + v |101〉 + w |011〉 , (19)

where u2 + v2 + w2 = 1. Using equations (18) and (19), we obtain an
expression for |�〉t which describes the time evolution of |�〉0. We evaluate the
three-tangle τ3 using its definition as the modulus of Cayley’s hyperdeterminants
[33], τ3 = 4|d1 − 2d2 + 4d3|, where di can be expressed in terms of the
coefficients (ψijk) of |�〉t = ∑

ψijk |ijk〉 as described in [32]. Using equation (19)

11
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Figure 5. Evolution of tripartite entanglement (τ3) (solid line) and two-qubit concurrence
Cex1,ex2(t) (dotted line) for the initial state of equation (18) with a = √

1/3 and u = v =√
1/2 exp(−λt/2) (equation (19))

and the initial state in equation (18), we obtain ψ000 = a,ψ110 = bu,ψ011 = bw,ψ101 = bv

and expressions for di [32], d1 = d2 = 0, d3 = ab3uvw and tangle τ3 = 16ab3uvw. For
u = v, we obtain by tracing out qubit or reservoir states, C2

ex1,ex2 = C2
ex1,p = 4(b2uw − abu)2,

and verification of the relation C2
ex1(p,ex2) = C2

ex1,ex2 + C2
ex1,p + τ3 [32] where Cex1(p,ex2) is the

concurrence due to the entanglement of the first qubit (ex1) with the remaining excitonic qubit
and photon state.

For u1 = u2 = √
1/2 exp(−λt/2) and a = √

1/3, τ3 reaches its maximum value of
(16/3

√
3)ab3 ≈ 0.97 at tm = 1

λ
ln 3

2 . The stark difference between τ3 and Cex1,ex2 is highlighted
in figure 5 which shows the sudden death and revival event experienced in the entanglement
between the two qubits (dotted line) at tESD = tESB = − 1

λ
ln(1 − ( a

b
)2) ≈ 0.69/λ. Such salient

features of bipartite exchanges are not apparent in the evolution of τ3.

6. Conclusion

In conclusion, we have analyzed entanglement exchanges amongst various bipartite partitions
which constitute a multipartite system undergoing quantum state conversions. We have
analytically demonstrated that the number and timing of ESD and ESB events are dependent
on the characteristics of quantum state exchanges in separate qubit–reservoir systems. We
have obtained explicit relations between bipartite concurrences implying overall conservation
of quantum information with superposition between some bipartite partitions giving rise to
entanglement between other partitions. We have shown that the invariance in dynamics of all
possible bipartite concurrences for various configurations of qubit–reservoir systems plays a
crucial role in identifying a global concurrence of the multipartite system. The possibility of
extending these results to the more general case of N > 3 pairs of qubit–reservoir systems
will be explored in future works.

We have also shown that salient features of bipartite entanglements may not be revealed
in tripartite entanglement of three-qubit states. Our work may have implications in the
construction of network protocols of the recently proposed quantum internet [34] which
employs photons that undergo reversible conversions to matter states.
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